pH-responsive glycol chitosan-cross-linked carboxymethyl-β-cyclodextrin nanoparticles for controlled release of anticancer drugs.
نویسندگان
چکیده
Carboxymethyl-β-cyclodextrin (CMβ-CD)-modified glycol chitosan (GCS) nanoparticles (GCS-CMβ-CD NPs) were synthesized, and their pH-sensitive drug-release properties were investigated. GCS-CMβ-CD NPs could encapsulate doxorubicin hydrochloride (DOX), and the encapsulation efficiency and loading capacity increased with the amount of CMβ-CD. Drug-release studies indicate that DOX released was greater in acidic medium (pH 5.0) than in weakly basic medium (pH 7.4). The mechanism underlying the pH-sensitive properties of the carrier was analyzed. Finally, the MCF-7 (human breast cancer) and SW480 cell lines (human colon cancer) were used to evaluate the cytotoxicity of the NPs. The drug-loaded carriers show good inhibition of the growth of cancer cells compared with free DOX, and the carriers have good biocompatibility. In addition, the drug-loaded NPs have sustained drug-release properties. All these properties of the newly synthesized GCS-CMβ-CD NPs suggest a promising potential as an effective anticancer drug-delivery system for controlled drug release.
منابع مشابه
Cross-linked β-cyclodextrin and carboxymethyl cellulose hydrogels for controlled drug delivery of acyclovir
To explore the potential role of polymers in the development of drug-delivery systems, this study investigated the use of β-cyclodextrin (β-CD), carboxymethyl cellulose (CMC), acrylic acid (AA) and N' N'-methylenebis-acrylamide (MBA) in the synthesis of hydrogels for controlled drug delivery of acyclovir (ACV). Different proportions of β-CD, CMC, AA and MBA were blended with each other to fabri...
متن کاملMagnetic nanoparticles grafted pH-responsive poly (methacrylic acid-co-acrylic acid)-grafted polyvinylpyrrolidone as a nano-carrier for oral controlled delivery of atorvastatin
Objective(s): Researchers have intended to reformulate drugs so that they may be more safely used in human body. Polymer science and nanotechnology have great roles in this field. The aim of this paper is to introduce an efficient drug delivery vehicle which can perform both targeted and controlled antibiotic release using magnetic nanoparticles grafted pH-responsive polymer.<s...
متن کاملCore-shell magnetic pH-responsive vehicle for delivery of poorly water-soluble rosuvastatin
Objective(s): Development of an oral sustained-controlled release vehicle which, slowly releases the drug and maintains an effective drug concentration for a long time is aimed.Materials and Methods: A biodegradable magnetic polymeric drug delivery vehicle, using superparamagnetic iron oxide nanoparticles encapsulating by polyvinylpyrrolidone-block-polyethylene glycol-block-poly methacrylic aci...
متن کاملPoly (methacrylic acid-co-acrylic acid)-grafted polyvinylpyrrolidone coated Magnetic nanoparticles as a pH-responsive magnetic Nano-carrier for controlled delivery of antibiotics
Objective(s): Pharmaceutical industries are leading to improved medications that can target diseases more effectively and precisely. Researchers have intended to reformulate drugs so that they may be more safely used in human body. The more targeted a drug is, the lower its chance of triggering drug resistance, a cautionary concern surrounding the use of broad-spectrum antibiotics. The aim of t...
متن کاملPolysaccharide-Gold Nanocluster Supramolecular Conjugates as a Versatile Platform for the Targeted Delivery of Anticancer Drugs
Through the high affinity of the β-cyclodextrin (β-CD) cavity for adamantane moieties, novel polysaccharide-gold nanocluster supramolecular conjugates (HACD-AuNPs) were successfully constructed from gold nanoparticles (AuNPs) bearing adamantane moieties and cyclodextrin-grafted hyaluronic acid (HACD). Due to their porous structure, the supramolecular conjugates could serve as a versatile and bi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of nanomedicine
دوره 10 شماره
صفحات -
تاریخ انتشار 2015